Multi-task Real-time System Energy Consumption Minimization using Mini-Max Method

A. Baums
Institute of Electronics and Computer Science, Dzerbenes st. 14, LV-1006, Riga, Latvia, tel.: +371 67558134; e-mail: baum@edi.lv

Introduction

Energy consumption reduction is a task of primary importance in embedded signal processing systems: sensor networks, mobile robots, wearable computers etc. [1]. Dynamic voltage scaling (DVS) is one of the most effective energy reduction technology [2,3,4,5,6]. Usually there are no or few problems if DVS is used in soft real-times system design or for task scheduling, where deadlines can be missed if the Quality of Service is kept [7,8,9]. It is different for hard real-time systems where it is necessary to provide that the task never misses its deadline and the energy saving is maximized. The problems arise in on-line systems where the task execution time is unknown at the starting moment of the ordinary task. Therefore the best energy reduction regime can not be selected. In majority of investigations and publications this problem is solved analyzing periodic task executions with off-line determined execution times and determined priorities.

The author has proposed the method of on-line minimization for the hard task energy consumption in [10]. This method named mini-max is a DVS modification. The suitability investigation of this method for different single task realization regimes was developed in [11]. In this article the mini-max method suitability for multitask hard real-time systems with earliest-deadlines first (EDF) and rate-monotonic scheduling (RMS) was investigated and the results are presented.

The mini-max method

By using the “mini-max” method deadline is guaranteed for the task execution at the minimal power till the critical time \(t_{cr} \), after which the execution is finished at maximal clock frequency. It is special case of DVS where three different frequencies: nominal \(f_0 \) (clock time \(\tau_{c0} \)), \(f_{\min}(\tau_{c_{max}}) \) and \(f_{\max}(\tau_{c_{max}}) \), are used. By compilation or simulation the task worst case execution time (WCET) is estimated.

The task on-line execution using the “mini-max” method:

- start at minimal \(f_{\min} \) frequency and minimal power consumption \(E_{\min} \)
- test the current task step \(i \), execution time \(t_{iran} \):

\[
t_{iran} \leq \tau_{c_{max}} (D - \tau_{c_{min}} N_{max})/(\tau_{c_{max}} - \tau_{c_{min}}) = t_{crit}. \quad (1)
\]

If (1) satisfied and \(t_{iran} < t_{crit} \) the task execution is interrupted

\[
E_{ci} = \tau_{c_{max}} P_{c_{min}} N_{i}, \quad (2)
\]

else if \(t_{iran} = t_{crit} \) the task execution is continued until deadline \(D \) at maximal frequency \(f_{\max} \) and

\[
E_{ci} = \tau_{c_{max}} P_{c_{max}} (D - t_{crit}). \quad (3)
\]

Comparison off-line DVS and on-line mini-max

In hard real-time systems at the task starting time by using the classical DVS it is impossible to determine the best clock frequency for minimal power consumption and hard deadline conditions. Only after the task execution time estimation at compilation for every of task step the right frequency \(\tau_{c_{i}} \) can determined.

If the \(\tau_{c_{i}} > \tau_{c_{max}} \) the power consumption for \(i \) task step is calculated using (2), else

\[
E_{ci} = \tau_{c_{i}} P_{c_{i}} N_{i}. \quad (4)
\]

The values \(\tau_{c_{i}} \) and \(P_{c_{i}} \) can be calculated analytically from \(P(i) \) or selected from table or graphical curve.

The gain from the mini-max method using energy consumptions in % can be estimated by using two characteristics \(\delta_{c0} = \frac{(E_{c_{0}} - E_{m-m}) 100}{E_{c_{0}}} \) and \(\delta_{c0} = \frac{(E_{c_{0}} - E_{m-m}) 100}{E_{c_{0}}} \). For the above example: \(\delta_{c0} = 15\% \) and \(\delta_{c0} = 38\% \) [8].

Multi task time driven system design methods

To estimate the possibility and the gain from the mini-max method using for multi task hard real-time
driven system there were two popular time driven task scheduling principles investigated earliest-deadlines first (EDF) or rate-monotonic scheduling (RMS). The conditions for n independent tasks with execution periods $T_i = D_i$ and constant realization times $WCET_i = C_i$ successful scheduling was proposed by Liu und Lyland [12].

For RM scheduling, where the task with shortest T_i has the highest priority, it is necessary to have utilization factor U less than $U(n)$:

$$C_1/T_1 + C_2/T_2 + \cdots + C_n/T_n = U \leq U(n) = \sum_{k=1}^n \left(\frac{1}{k!} - 1\right),$$

(5)

where $U(n) = \left(\frac{1}{n!} - 1\right)$ when $n = 1$, $U(n) = 0.83$ when $n = 2$, $U(n) = 0.78$ when $n = 3$, $U(n) = 0.76$ when $n = 4$, $n \rightarrow U(n) \rightarrow \ln 2 = 0.693$.

By using RM scheduling the highest priority tasks usually frequently interrupt other tasks and remarkable time can be consumed.

For EDF scheduling, where the highest priority has the task which execution time is close by deadline or execution period T_i, utilization factor U:

$$C_1/T_1 + C_2/T_2 + \cdots + C_n/T_n = U \leq 1.$$

(6)

Multi task EDF With-on-line mini-max and off-line DVS

For multi task hard deadline real time system energy consumption gain estimation by using on-line mini-max and off-line DVS was performed. At first EDF scheduling was used and estimated. Example of three periodic tasks (Fig. 1) with T_i and C_i ($C_1 = 3ms$ and $T_i = 8ms$; $C_2 = 3ms$ and $T_2 = 10ms$; $C_3 = 1ms$ and $T_3 = 14ms$; $U = 0.745$ was selected for analyses. The characteristics are selected according paper [13], where off-line DVS algorithm is used. Results of mini-max EDF scheduling are presented on Fig. 2 (scheduling for tasks with identical characteristics using off-line DVS).

Multi task EDF with different execution times

The previous section was devoted on-line and off-line DVS scheduling for WCET. Yet the main benefit from mini-max or DVS scheduling can be achieved at different execution time task scheduling. Using EDF algorithm for both scheduling the $U \leq 1$ condition is necessary to satisfy. The results of energy consumption estimation for both scheduling at task execution time dynamic discrete changes are presented in Table 1 and Fig. 3.

<table>
<thead>
<tr>
<th>tasks</th>
<th>U</th>
<th>E_{m-m}</th>
<th>E_{DVS}</th>
<th>$E_{\tau_{co}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75</td>
<td>92.9 µJ</td>
<td>98.9 µJ</td>
<td>104 µJ</td>
</tr>
<tr>
<td>2</td>
<td>0.30</td>
<td>13.5 µJ</td>
<td>13.5 µJ</td>
<td>54 µJ</td>
</tr>
<tr>
<td>3</td>
<td>0.42</td>
<td>27.4 µJ</td>
<td>31.5 µJ</td>
<td>78 µJ</td>
</tr>
<tr>
<td>4</td>
<td>0.52</td>
<td>49.0 µJ</td>
<td>54.0 µJ</td>
<td>96 µJ</td>
</tr>
<tr>
<td>5</td>
<td>0.59</td>
<td>61.7 µJ</td>
<td>79.0 µJ</td>
<td>108 µJ</td>
</tr>
<tr>
<td>6</td>
<td>0.65</td>
<td>74.3 µJ</td>
<td>80.4 µJ</td>
<td>120 µJ</td>
</tr>
<tr>
<td>7</td>
<td>0.80</td>
<td>93.0 µJ</td>
<td>110.4 µJ</td>
<td>126 µJ</td>
</tr>
<tr>
<td>8</td>
<td>0.86</td>
<td>99.6 µJ</td>
<td>115.0 µJ</td>
<td>156 µJ</td>
</tr>
<tr>
<td>9</td>
<td>0.89</td>
<td>117.8 µJ</td>
<td>126.4 µJ</td>
<td>162 µJ</td>
</tr>
<tr>
<td>10</td>
<td>0.96</td>
<td>130.3 µJ</td>
<td>150.4 µJ</td>
<td>174 µJ</td>
</tr>
<tr>
<td>11</td>
<td>0.99</td>
<td>129.0 µJ</td>
<td>160.0 µJ</td>
<td>180 µJ</td>
</tr>
</tbody>
</table>

| Fig. 1. Time diagram for 3 task on-line EDF scheduling using mini-max |
| Fig. 2. Time diagram for 3 task off-line EDF scheduling using DVS. The energy consumption for the tree regimes: $E_{m-m} = 92.9µJ$, $E_{DVS} = 98.4µJ$ and $E_{\tau_{co}} = 103.5µJ$ |
task with the smallest period T_i it is started again and no lower priority tasks can be executed (Fig.4).

To accommodate multi task RM for $mini$-max method the scheduling can be modified: after the task j execution in step i when deadline D_j, it can not be initiated again in spite of its priority p_j and freshed data.

Using $mini$-max method and modified RM scheduling for the same example the energy consumption time a diagram is built (Fig. 5). This time diagram of energy consumption is similar to the EDF scheduling diagram and the level of energy consumption is the same size for both.

Fig. 3. Energy consumption as function of utilization U for nominal frequency, off-line DVS and on-line mini-max

Mini-max multi task RM scheduling

The problem of the $mini$-max for RM scheduling can be analyzed by using the previous simple example ($C_1 = 3$ms and $T_1 = 8$ms; $C_2 = 3$ms and $T_2 = 10$ms; $C_3 = 1$ms and $T_3 = 14$ms; $U = 0.745$). After finishing the highest priority

Fig. 4. The mini-max RM scheduling problem

Conclusions

The analytic investigation confirms that $mini$-max method can be successfully used for energy consumption optimization in multi task systems:
1. For hard real-time multi task time driven EDF scheduling $mini$-max method at $U \leq 1$ can be used on-line;
2. The energy consumption is linear to utilization factor U;
3. The energy consumption using $mini$-max is roughly 10% smaller than using off-line DVS;
4. The $mini$-max method can be used for modified multi task RM scheduling and the benefits of energy consumption are similar to EDF scheduling.

Further experimental investigations are necessary for the method implementation.

References

Applicability of mini-max method of scheduling for hard real-time multi task time driven EDF is investigated and the gain of its usage is estimated. The Multi-task scheduling can be implemented on-line using mini-max method. The energy consumption is roughly 10 % smaller for mini-max method compared to DVS off-line method. Mini-max method can be successfully used for modified multi task RM scheduling. Ill. 5, bibl. 13 (in English; summaries in English, Russian and Lithuanian).

Исследуются возможности использования метода mini-max для экономии энергопотребления в многозадачных системах реального времени. Основное внимание уделено системам реального времени с EDF планированием с критическими условиями. Показано, что метод mini-max открывает возможность в режиме „on-line“ на 10 % понизить энергопотребление по сравнению с DVS off-line. Метод mini-max не может быть непосредственно применен при RM планировании многозадачных систем. Однако при использовании предложенного модифицированного RM могут быть получены аналогичные с EDF планированием результаты. Ил. 5, библ. 13 (на английском языке; рефераты на английском, русском и литовском яз.).

Nagrinėjamos minimakso metodo taikymo energijos suvartojimui minimizuoti realaus laiko užduočių sistemos galimybės. Daugiausia dėmesio skiriama realaus laiko sistemoms su EDF planavimu esant kritinėms sąlygoms. Parodyta, jog minimakso metodas išgelina realią laiką iki 10 % sumažinti energijos suvartojimą palyginti su DVS metodu. Minimakso metodas negali būti tiesiogiai taikomas planuojant daugelio užduočių RM sistemas. Tačiau, taikant pasilytą modifikuotą RM, galima gauti tokius pat rezultatus kaip ir planuojant EDF. Ill. 5, bibl. 13 (anglų kalba; santraukos anglų, rusų ir lietuvių k.).