Algorithms of Mobile Object Location with Satellite Systems

A. Kluga

Department of Transport electronics and telematics, Riga Technical University, Lomonosova iela 1, V korpus LV-1019, Riga, LATVIA, e-mail: ansis.kluga@rtu.lv

Introduction

Main problems for mobile object location with satellite systems are solving a return navigation task when coordinates are unknown and filtering noise errors. These problems must be solving when object is moving with high speed and acceleration. The second task is developing using same else systems for velocity and acceleration measurements. In this case complex information processing algorithms are used.

For algorithms execution it was necessary to modeling satellite systems space objects, main errors of signal propagations and receiving. Satellite distribution modeling is described in [1] and all satellite parameters are used for GPS “NAVSTAR”. Next step is to select of all satellites only best configured for minimized dilution of precision factor. Algorithms for satellite selection are used from [2]. For solving return navigation task tow methods and algorithms are research. First is the minimum mean-square (MMS) recursive algorithm. Second is recursive Kalman filtering algorithm.

Estimation of MMS recursive algorithm for mobile object place determination

For mobile object place location with minimum mean-square method is used algorithm:

\[\hat{X} = X_0 + (H^T H)^{-1} H^T (\tilde{D}_M - D_M (\hat{X}_0)) . \]

(1)

Where: \(X_0 \) - vector of mobile object coordinates before estimation, \(\hat{X} \) - estimated coordinates, \(\tilde{D}_M \) - measured distances vector, \(D_M \) - calculated distances vector.

Vector \(H \) is processing using equation:

\[H = (\partial D_M^T (\hat{X}_0)/\partial X)^T . \]

(2)

Results of modeling object location using (1) in case when coordinates before estimation are in center of Earth and clock time move called distance error is 85000 m is shown in Fig.1. Distance measuring errors are modeling as random processes with mean square value 10 m. For mobile object place location is used three coordinates \(X, Y, Z \) and move of clock time measured in meters. How it is obvious from Fig.1 after 3-4 cycles the place location is obtained with high precision. Fig.2 shows modeling results using MMS algorithms, when the coordinates and clock move before estimation are known with high accuracy. How it is obvious from Fig.2 random errors of coordinates are between values 20 – 50 m. In Fig.1 these errors also are present, but the scale of figure do not allow seeing them.

Fig. 1. Results of modeling mobile object location with MMS recursive algorithm when coordinates before estimation are in center of Earth and clock time move called distance error is 85000 m

Fig. 2. Results of modeling mobile object location with MMS recursive algorithm when the coordinates and clock move before estimation are known with high accuracy

55
Estimation of recursive Kalman filtering algorithm for mobile object place determination

For mobile object place location with Kalman filter are used following algorithms:

\[K_k = P_k^{-1} H_k^T (H_k P_k^{-1} H_k^T + R_k)^{-1}, \]
\[\hat{X}_k = \hat{X}_k^{-} + K_k (Z_k - H_k \hat{X}_k^{-}), \]
\[P_k = (I - K_k H_k) P_k^{-} \]
\[P_{k+1} = \Phi_k P_k \Phi_k^T + Q_k, \]
\[\hat{X}_{k+1} = \Phi_k \hat{X}_k. \]

Where \(H_k \) – measurement transmission matrix, \(Z_k \) – vector of measured parameters, \(X_k \) – systems state matrix, \(K_k \) – Kalman filter transmission matrix, \(\Phi_k \) – system state transmission matrix, \(P_k \) – measurement noise covariance matrix, \(Q_k \) – systems noise covariance matrix.

Index “–” show that parameters are calculate before measurements in “k” cycle.

Control of Kalman algorithm work was done in conditions so as for MMS algorithms. When noise is not influence the measurements after 3-4 cycles the place location is obtained with high precision, in case when coordinate before estimation is in center of Earth and clock time move called distance error is 85000 m. This result is absolutely equal with result show in Fig.1.

If there are noise of measurements the time of coordinate estimation is many times more than if the MMS algorithm is used. In Fig.3 are shown results of coordinate estimation for Kalman algorithm when noise of measurement is normal with sigma 10m and place point before estimation is turn of 1km and clock time move called distance error is 85000 m and is know.

As it is visible from Fig. 3, the error of coordinates estimation after 30 cycles are more then 100m, but fluctuations are very small. Better it is seen from Fig.4.

where Kalman filtering of coordinate estimation is used without place turn off. How it is seen fluctuation error is about 5 – 10 m.

Control of Kalman algorithm work was done in conditions so as for MMS algorithms. When noise is not influence the measurements after 3-4 cycles the place location is obtained with high precision, in case when coordinate before estimation is in center of Earth and clock time move called distance error is 85000 m. This result is absolutely equal with result show in Fig.1.

If there are noise of measurements the time of coordinate estimation is many times more than if the MMS algorithm is used. In Fig.3 are shown results of coordinate estimation for Kalman algorithm when noise of measurement is normal with sigma 10m and place point before estimation is turn of 1km and clock time move called distance error is 85000 m and is know.

As it is visible from Fig. 3, the error of coordinates estimation after 30 cycles are more then 100m, but fluctuations are very small. Better it is seen from Fig.4.

Explore of MMS and Kalman recursive algorithms show that in case of large indeterminate of object start coordinates best results may be obtain with MMS algorithms, but precision of coordinates determination is higher in case when Kalman recursive algorithms are used.

As it is visible from Fig. 3, the error of coordinates estimation after 30 cycles are more then 100m, but fluctuations are very small. Better it is seen from Fig.4.
Kalman filtering also determines the parameters of mobile object motion, such as speed and acceleration. So it is recommended use MMS algorithms in first stage of coordinate determination and then uses Kalman recursive filtering. The results of tow step algorithm modeling are show in Fig. 5. First minimum mean-square method is used and when correction of coordinates is less then 10m Kalman recursive algorithms is executed. How it is done is shown in [4].

The described method of increase in accuracy of estimation of position of mobile objects due to complex used of minimum mean-square algorithms and Kalman recursive algorithms may be exploit in global satellite systems. The offered complex algorithm reduce time of coordinate estimation because MMS algorithms are very effective for quick place processing, but Kalman recursive algorithm allows to reduce fluctuation errors and estimate the dynamic parameters of mobile object.

Conclusion

The described method of increase in accuracy of estimation of position of mobile objects due to complex used of minimum mean-square algorithms and Kalman recursive algorithms must be corrected. How it is done is show in [4].

References